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Continuous multiplexed population
representations of task context in themouse
primary visual cortex

Márton Albert Hajnal 1,7, Duy Tran2,3,7, Michael Einstein2,
Mauricio Vallejo Martelo 2, Karen Safaryan2, Pierre-Olivier Polack 4,8,
Peyman Golshani 2,5,6,8 & Gergő Orbán 1,8

Effective task execution requires the representation of multiple task-related
variables that determine how stimuli lead to correct responses. Even the pri-
mary visual cortex (V1) represents other task-related variables such as expec-
tations, choice, and context. However, it is unclear how V1 can flexibly
accommodate these variables without interfering with visual representations.
We trained mice on a context-switching cross-modal decision task, where
performance depends on inferring task context. We found that the context
signal that emerged in V1 was behaviorally relevant as it strongly covaried with
performance, independent from movement. Importantly, this signal was
integrated into V1 representation by multiplexing visual and context signals
into orthogonal subspaces. In addition, auditory and choice signals were also
multiplexed as these signals were orthogonal to the context representation.
Thus, multiplexing allows V1 to integrate visual inputs with other sensory
modalities and cognitive variables to avoid interference with the visual
representation while ensuring the maintenance of task-relevant variables.

To survive and thrive, organisms need to respond in distinct ways to
identical stimuli, depending on the wider behavioral context. How
the brain represents and maintains these contextual variables dur-
ing decision making is poorly understood. Task context can be
considered as the variable that determines the contingencies
between stimulus and reward, but these variables may not be
directly observed; rather animals are required to infer their value
and store them internally. Several studies have demonstrated con-
textual modulation of individual neuronal activity patterns in
prefrontal1 and primary sensory cortical areas1–3. Yet, it is not known
how primary sensory cortical representations are organized such
that neurons can encode sensory and cognitive variables

simultaneously. Organization of the representation is crucial since
the primary sensory area is the gateway to all other downstream
areas and therefore compromising sensory information could
interfere with processes unrelated to the task. Furthermore, task
execution also relies on variables other than task context. Recent
studies have demonstrated that non-sensory, task-related variables
are represented in the primary visual cortex of rodents4–7. Since
population responses undergo task-related transformations when
performing a visual task8,9 it is critical to understand how the visual
cortical representations contribute to performing multiple tasks
and how the V1 representation integrates all task-relevant variables
simultaneously.
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Highly structured activity is present in the visual cortex and in
particular in V1 even in the absence of visual stimuli10,11. Previous stu-
dies have been divided with respect to the functional interpretation of
this structured activity. On one hand, off-stimulus activity has recently
been reported to reflect movement-related variables12. This
movement-related activity was shown to persist through stimulus and
reside in a subspace that is orthogonal to that occupied by visually
evoked activity, sharing a single dimension of activity with visual sti-
mulus evoked activity, thus ensuring that processing of visual infor-
mation remains relatively intact by ongoing movements. On the other
hand, statistical structure of neural activity in the absence of stimulus
have been related to the subject’s prior expectations of future sensory
inputs13 and maintenance of such a prior contributes to inferring
environmental features underlying sensory experiences14,15. Similar to
these environmental features, task context is also inferred from and
affects the interpretation of sensory stimuli. While task context has
been identified in neural activity both during stimulus presentation
andoff-stimulus periods1, it remains anopenquestion, if context is also
represented in an independent fashion during stimulus presentation
and in intertrial intervals, when stimulus is absent.

To answer these questions, we designed a paradigm where mice
switched between two tasks during a single recording session. During
both tasks, mice were presented with the same visual and auditory
stimuli. The two tasks differed in the stimulus modality (audio or
visual) on which the animals needed to base their decisions to obtain
rewards. We performedmulti-channel electrophysiological recordings
in V1 of mice during task performance. Critically, in our paradigm,
identical stimuli led to different behavioral outcomes depending on
context. Hence, the latent variable related to the context (whether the
animal based its choices on visual or auditory input) could be identi-
fied in the neuronal population activity. We addressed two questions:
First, we investigated the geometry of the representation of the latent
variable ‘task context’ during on-stimulus and off-stimulus activities
and the relationship of this cognitive variable to task execution. Sec-
ond, we investigated how a population of neurons can accommodate
multiple task-relevant variables without interference between repre-
sentations. We found that context can be decoded with high accuracy
from V1 population activity both during visual stimulus presentation
and inter-trial intervals. This context representationwas orthogonal to
the representation of visual stimulus identity. Remarkably, relevance
of the context representation could be demonstrated by a stronger
context-related signal during periods of high behavioral performance.
The context representation was persistent across stimulus presenta-
tion and off-stimulus periods, yet the representation was not static but
displayed distinctive dynamics upon stimulus onset and offset. Other
task-relevant variables, identity of auditory stimulus and the choice
animals were making, were simultaneously represented in the V1
population in distinct subspaces of the neural activity. Performing two
movement related controls, we found that context could be decoded
independent of the speed and of posture changes of the animal. In
summary, activity patterns in V1 independently represented visual
stimuli and cognitive variables relevant to task execution.

Results
Cross-modal audiovisual task
We trained mice on a cross-modal audiovisual go/no-go task
(Fig. 1a–c). The task consisted of four blocks: two unimodal sensory
discrimination blocks where animals licked or refrained from licking
either based on the orientation of the visual stimulus (45° or 135°) or
the frequency of an auditory tone (5 kHz or 10 kHz) and two cross-
modal discrimination blocks where animals were presented with both
auditory and visual stimuli and made their decision to lick based on
one modality while ignoring the other (Fig. 1a). The unimodal blocks
preceded the cross-modal block in which the modality that was rele-
vant for the decision was the same as the modality of the unimodal

block (Fig. 1c). The modality of the initial unimodal block was rando-
mized across animals. Critically, during the cross-modal blocks, the
two stimulus modalities were presented simultaneously but the rele-
vant modality was uncued and it was the task context that determined
the relevance of a particular modality with respect to the choice that
the animals had tomake. Only licking or refraining from licking during
the final second of the 3-second visual stimulus was considered as the
animal’s decision (Fig. 1b).Misses and false alarms led to a timeout. The
stimulus modality in the initial block was selected randomly for any
given day and the modality of the subsequent block, the transition
block, was the other modality.

We trained 8 animals to perform the context-dependent decision
making task (Fig. 1d). Mice were first trained on the visual dis-
crimination task over multiple sessions (eight sessions on average,
Fig. 1d, light blue, see “Methods” for details); next, theywere trainedon
the auditory discrimination task over the subsequent sessions (five
sessions on average, Fig. 1d, light green); and finally on the attend-
visual and attend-auditory cross-modal tasks in random order within a
session over 15 training sessions on average (Fig. 1d, dark gray). Ani-
mals performed 300–500 trials daily. Performance of individual ani-
malswasmeasuredusing thed’ statistics, whichmeasures the standard
deviation from chance performance during ‘lick’ and ‘no-lick’ trials
(chance d’ = 0, see “Methods”). Training of the animals was considered
complete when their performance in the cross-modal task exceeded d’
= 1.7 (probability of chance behavior <0.1%). All animals showed
average d’ values above the threshold in all behavioral tasks (Fig. 1d).

We used detailed behavioral modeling in order to reliably corre-
late potential changes in behavioral strategieswith neural signaturesof
task performance. Trials were distinguished based on three factors: 1,
Task context; 2, Congruence of multimodal stimuli, i.e. whether the
auditory and visual stimuli indicated the same action in the two con-
texts; 3, Task outcome, i.e. whether the expected behavioral response
was ‘go’ or ‘no-go’. Animals tended to commit errors more frequently
in ‘no-go’ trials and in conflict trials, which required context inference
and active conflict resolution (Fig. 1e). Poor average performance in
conflict ‘no-go’ trials prompted a detailed analysis of performance: low
performance can be both a result of a constant high error rate or shifts
between behavioral strategies. We analyzed trial-by-trial performance
to identify periodswhere task-consistent behaviorwaspresent (Fig. 1f).
Binary responses prevent strict trial-by-trial analysis of the behavior.
Instead, we assumed across-trial constancy of a strategy and therefore
we calculated a running average of choices in different trial types.
Consistent blocks are identified with blocks of trials where all four trial
types (congruent/incongruent, and ‘go’/’no-go’, Fig. 1f) showed above
chance performance. The moving average spanned 20 trials, ensuring
both continuity of consistent blocks and a sampling of all trial types.
The identified consistent blocks could not result frommaking random
trials with a lick frequency matched to the measured tendency of the
animals to lick (Fig. 1f inset, “Methods”). Consistent blocks of trials in
both the attend-audio and attend-visual contexts were found in all
animals (n = 8, Fig. 1g). No systematic difference was found in the
length of consistent blocks between the two contexts across animals,
and half of them were characterized with balanced lengths. In these
consistent blocks performance of the animals was balanced across
contexts and, importantly, successful ‘go’ and ‘no-go’ trials were also
balanced (Fig. 1h).

To directly test if contextual modulation of choices underlies
behavior, we formulated alternative behavioral models corresponding
to behavioral strategies with and without contextual effects. We
compared alternative models based on their log likelihood for the
trials in consistent blocks. First, we compared a context-aware model
to a model that based its choices on the opposite, contextually irre-
levant modality. Then we compared an extended version of the con-
text aware model that featured nonspecific noise variables to account
for biases and lapses to the context unaware model that ignored the
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stimuli completely but featured a bias term which determined the
tendency of the animal to lick in a given trial. These two comparisons
addressed the two possible cases of non-performance: opposite
modality interference and random choice. Since incongruent trials
were most challenging for the animal, we constrained our analysis to
incongruent trials and evaluated the alternative models based on the
likelihood of the choices of individual animals. In the first comparison,
the context aware model fared better than the opposite irrelevant
modality based model (Fig. 1i). In the second comparison for biases
and lapses, the context-aware behavioral model consistently had the
highest likelihood for the choices each animal made at either a rea-
sonable bias (β) or lapse (λ) parameter (pgo~1+ β, pnogo ~ β, and pgo ~ 1 −
λ, pnogo ~ λwhere β = 0.08 ± 0.07, and −0.01 ± 0.05, λ =0.13 ± 0.03, and
0.07 ±0.02 over mice for visual and audio contexts, respectively,
Fig. 1j, “Methods”), confirming that consistent trials were characterized
by contextual modulation of behavior.

Non-visual variable related activity in V1
Neural activitywas recorded fromall V1 layers on 128 channels (two64-
channel shanks) with extracellular silicon probes16. Spiking activity of
sorted units was obtained by applying kilosort217 followed by strict
manual curation. Importantly, as task context is characterized by slow
dynamics we paid specific attention to electrode drift as it could
introduce long time-scale correlations in the recorded activity,
potentially confounding the analysis of context representation. To
prevent this, we relied on a conservative spike sorting approach. Units

were tested individually for drift by assessing the constancy of signal to
noise ratios on amplitudes, feature projections, and spiking frequency
across the recording session (see “Methods” and Supplementary Fig. 1)
and were discarded from further analysis if showing signatures of drift
even on a short part of the session. The stringent selection criteria
yielded 196 units across all mice (see Supplementary Fig. 4 for the
distribution of units across mice).

Visual stimulus presentation to themonocular contralateral visual
field induced substantial modulation of the activity of V1 neurons
(mean firing rate changed from 6.79 ± 0.66 to 8.14 ± 0.74Hz from
baseline to stimulus presentation, trial-to-trial variance on stimulus,
meanand s.e.m. over neurons: 22.92 ± 2.95Hz2, number of neurons 196
from 8 mice) including neurons whose firing rate was increased
(5.78 ±0.63 to 8.56 ± 0.78Hz and trial to trial variance on stimulus:
26.23 ± 3.31 Hz2, 138 neurons) or decreased (9.19 ± 0.70 to
7.13 ± 0.62Hz and trial to trial variance on stimulus: 15.83 ± 1.71 Hz2, 58
neurons), respectively (Fig. 2b). Mean waveform trough-to-peak time
and amplitude clustering revealed 73 narrow spiking and 123 broad
spiking units, with firing rate change to stimulus from 10.40 ± 1.50 to
12.06 ± 1.63Hz and 4.65 ± 0.47 to 5.81 ± 0.58Hz, respectively. Indivi-
dual neurons showed sensitivity, quantified as mean response differ-
ence in units of standard deviation (see “Methods”) to visual stimulus
identity, auditory stimulus identity, or the choice the animal was about
to make (Fig. 2b). In addition, we also found neurons that displayed
distinct activity levels in the two task contexts (Fig. 2b). Individual
neurons showed mixed selectivity to multiple variables.

Fig. 1 | Behavioral paradigm. a Stimulus and reward structure in the ‘attend visual
stimulus’ (left) and ‘ignore visual stimulus’ (right) tasks. b Trial structure. Stimuli
were presented for three seconds, and a three-seconds rest period followed (time-
out extended the delay to ten seconds).Waterwas available after two seconds from
start. c Structure of an experimental session. d d′ values for individual sessions of 8
animals, in the visual and auditory discrimination tasks (light blue and light green,
respectively), followed by the cross-modal task, where each session combines the
attend visual (dark blue) and attend auditory (darkgreen) context in randomorder;
expert level performance was defined when combined d’ exceeded 1.7 (dashed
horizontal line). Each filled dot represents the averaged d′ of one animal in a given
training session, the empty circle represents the recording session. Individual
animals (thin lines) and averages overmice (thick lines) are shown. Mostmicewere
trained for fewer sessions than the full duration of the three session types. Session
days are aligned to the last session for each animal. Multimodal sessions are
overlaid for easier comparison of performances. e Fraction correct of responses
grouped by congruence and expected action (‘go’ or ‘no-go’) in the two contexts
(blue and green). Individual animals (n = 8, dots) and the whole population (violin
plots, red line: mean across animals) are shown. f Behavioral performance for an
example animal during a recording session for different trial types (top four

panels). Success and failure trials are marked by filled circles and crosses, respec-
tively. Lines show moving averages, and darker shading indicates above chance
performance. Consistent trials (bottom panel, purple) correspond to periods with
above chance performance on all four trial types. Inset: probability of (horizontal
axis) the number of trials, N, in (light blue) and length of consecutive consistent
trials occurring at least once, L, of (purple) the session in one context (70 trials)
under amodel inwhich the animalmakes randomdecisions with lick ratematching
the empirical rate in incongruent trials (p =0.75). Legend: cumulative probability of
at least (≥) the number and at least one occurrence of at least the length for the
criteria for consistency (N,L = 10, vertical dashed line, circles) and typical mice
(N,L = 20, squares). g Number of consistent trials for individual mice (n = 8) for the
visual (blue) and audio (green) context. h Fraction correct performance for all trials
in consistent periods (colors as above), and for incongruent ‘no-go’ trials only (red
dashed lines). i, Model log-likelihoods averaged over consistent incongruent trials
in the visual (blue) and audio (green) context for individualmice (n = 8), for amodel
targeting the oppositemodality (empty bars), and the correctmodality. j Same as i,
but with a context agnostic model with mean choice lick bias (faint colors), and a
context-aware model with a fitted bias or lapse parameters (intense saturated
colors).
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Selectivity of individual neurons showed that all relevant tass
variables were represented in V1 but it remains unclear how dominant
this is in the population activity.Wemeasured the task-variable elicited
variance, the variance inmean responses to the two distinct values of a
particular task variable. The relative task-variable elicited variance was
obtained by normalizing with the total variance in population activity,
resulting in 1.89 ±0.41% (visual), 2.66 ±0.62% (audio), 3.16 ± 0.48%

(context), 1.24 ± 0.25% (choice), averaged over n = 8 animals (Fig. 2d,
open circles). The dominance of these task-related variances in
population activity was assessed by measuring task-variable con-
tributions to the principal components (PCs) of population activity,
termed signal variance. Task variables could be readily identified in
individual PCs, indicating a prominent contribution to population
activity (Fig. 2c).We calculated relative contributions of individual task
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variables to each PC. For this, we first assessed the signal variance in
individual PCs and then the cumulative signal variancewas established
as the sum of variance explained by the specific task variable in a
subset of PCs (Fig. 2d, inset, see also “Methods” for details). Finally, we
calculated the relative contribution of a specific task variable to the
total variance in the population as the ratio of cumulative signal var-
iance and total variance captured by the same subset of PCs. The
relative cumulative signal variances peaked at low dimensional PC
subspaces, indicating that all task variables are prominent in low
dimensional subspaces (Fig. 2d). A randomorthonormal basis resulted
in markedly lower relative cumulative variance. In summary, popula-
tion activity in V1 is influenced by all relevant task variables and these
task variables contribute to the leading directions of variance.

Orthogonal representation for sensory stimuli and task context
The above analyses highlighted that the task context is represented in
the population activity of V1 neurons. To investigate how V1 differen-
tially represents identical stimuli when these stimuli indicate different
behavioral outcomes, we constructed linear decoders (Fig. 3a) for
visual stimulus identity (Fig. 3b) and context (Fig. 3e). We fitted sepa-
rate decoders in 50-ms time windows (Fig. 3b, e, for details see
“Methods”). To distinguish decodability from chance, we compared
decoder accuracies to randomized label decoders (shuffled baseline,
see “Methods”). Both visual stimulus and task context could be deco-
ded throughout the stimulus presentation period, and this was con-
sistent across animals (Fig. 3c, f, mean visual accuracy 0.70 ±0.06,
2 s.e.m. of visual accuracy 0.03 ±0.00, mean context accuracy
0.67 ±0.04, 2 s.e.m. 0.03 ±0.00, number of animals: 8). We assessed
the overlap between visual and context representations by comparing
the contribution of individual neurons to the two linear decoders
(Fig. 3d, g).We found strong overlapbetween theweights of visual and
context decoders, confirming mixed selectivity for stimulus and con-
text. We then asked if the activity of narrow-spiking, putative inter-
neurons, could potentially encode context. When constraining our
analysis to narrow spiking neurons, we found stable context repre-
sentation (Supplementary Fig. 2c, d). The analysis was repeated for
only broad spiking cells. We found that accuracy of decoding context
from broad or narrow spiking neurons was close to that from all
neurons (Supplementary Fig. 2) indicating that context is not repre-
sented solely in narrow or broad spiking neurons.

We investigated whether stronger neural context representation
corresponds to better behavioral performance. We used the trained
context decoders to assesspopulation activity separately in trialswhen
the behavior indicates consistent context-aware choices (consistent
blocks) and in trials outside this regime (‘exploratory blocks’, Figs. 1f,
3h). The number of trials between contexts and performance levels
were equalized by repeated subsampling (Fig. 3i, see “Methods').
Decoder performance differences between consistent and exploratory
trials were significantly positive in most animals (n = 6 out of 8) and
also when using the distribution of differences from all animals
(Fig. 3j). Importantly, enhanced contextual modulation of population
responses in consistent blocks indicates that behavior that is more

consistent with task rules is actually correlating with stronger con-
textual modulation.

A context representation that is not independent from visual
content representation could yield correlations that are detrimental
to the visual stimulus representation. We therefore investigated the
relationship between the visual and context representations by
analyzing the properties of their decoders. Using our Multidecoder
Subspace Analysis framework (MDSA, see “Methods”), we con-
structed a trial-by-trial measure of population activity: population
vectors constructed from spike counts during the first 1.5 s after
stimulus onset were projected on a two-dimensional subspace
defined by the DVs (Fig. 3a) of the two investigated variables
(Fig. 3k). MDSA for the visual and context decoders revealed a
striking pattern (Fig. 3l): population responses to different task
contexts and different visual content formed distinct clusters, and
variations across contexts and stimulus identities were close to
orthogonal. Orthogonality was consistent across animals (Fig. 3m),
highlighting that visual stimulus and context were represented in
independent subspaces albeit with overlapping populations
(Fig. 3l). Time-resolved analysis of the DV angle showed consistent
orthogonality during stimulus presentation (Fig. 3n, “Methods”).
We constructed two additional tests of the geometry of context and
visual representations. First, we investigated context-related activ-
ity along the dimension in which the visual stimulus was repre-
sented. Decoding context from neural activity along the visual DV
yields close to chance performance (Supplementary Fig. 3a, b).
Second, we analyzed if augmenting the one-dimensional space
identified by the context decoder by the visual DV results in
improvement in context decoding, a signature of not independent
representations. We applied an outer two-fold cross-validation
scheme: we projected activity in test trials onto the context DV basis
fitted in training trials. Adding the visual subspace to the context
subspace did not increase the context accuracy (Supplementary
Fig. 3c, d). Thus, the visual subspace does not contain linearly
decodable information about context.

Both the activity of individual neurons and that of the neuron
population indicated sensitivity to the auditory modality (Fig. 2). In
order to establish if the representation of auditory stimulus is
organized along similar principles as that of visual stimulus, we
performed the decoding analyses for auditory stimuli too. Auditory
stimuli could be decoded from population activity (Supplementary
Fig. 5a, b) and contribution to auditory decoding was distributed
across the recorded population of V1 neurons (Supplementary
Fig. 5c). Neurons contributing to the auditory decoder did not show
consistent correlations with those contributing to context decod-
ing (Supplementary Fig. 5d). MSDA revealed that the decoder for
the auditory stimulus was orthogonal to the decoder learned for
task context (Supplementary Fig. 5e–g). Thus, the population
activity in V1 is organized such that beyond the visual modality, the
other task-relevant modality is also represented, and variance eli-
cited by sensory variables are orthogonal to the context
representation.

Fig. 2 | Population recording fromtheV1of an examplemouse. a Spike raster for
the recorded population of 31 neurons in five subsequent multimodal trials in an
example animal. Both stimulus presentation period (gray background) and inter-
trial intervals (white background) are shown. Letters labels indicate neurons on (b).
b Sensitivity of four example neurons (rows) to different task-relevant variables
(columns). Across-trial average firing rates for two values of the particular variable
(dark and light lines, shadings around lines denote 2 s.e.m., values are indicated in
the legend). Sensitivity to a particular task variable (difference inmeans normalized
by the standard deviation and averaged across time points) are shown both for the
stimulus presentation period and for the intertrial interval (numbers at the top of
panels). c Task-relevant modulation of population activity as shown by Principal
Component Analysis (PCA) performed on the stimulus presentation period. Time

course of population activity projected on the first three principal components
(three rows) averaged across different values of the four task-relevant variables
(four columns). Colors are matched with those on (b). d Relative signal variance of
population activity associated with the four different task-relevant variables (four
columns). Variance is normalized by the total variance of the population responses.
Relative variances are shown cumulatively for activities projected on a growing
subset of PCs. Inset shows signal and total variances on separate vertical scales, the
numerator (dark blue), and total variance (red), the denominator, of the relative
variance shown in themain panel. Empty circles correspond to the total variance. A
baseline relative variance is established by using a random orthogonal projection
matrix (mean, and s.e.m. of 20 random projections, gray dashed lines and bands,
respectively).
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Fig. 3 | Representationof taskcontext inpopulationactivity. a Illustration of the
decision vector of a linear decoder constructed for neural activity. A linear decoder
discovers a decision boundary (green surface) in the activity space which separates
responses in individual trials (dots) in two conditions (red and blue). The decision
boundary can be uniquely characterized by the decision boundary normal vector
(decision vector, DV, green arrow). b Visual decoder performance in 50ms time
windows at 10ms sliding resolution for an example animal. Gray background
represents the stimulus presentation period. Gray dashed line indicates shuffled
baseline. Note thatfiring rates are estimated by using convolution kernelswith 100-
ms characteristic width and therefore decoders contain information from future
time points, resulting in a slight increase in decoder performance prior to stimulus
onset. cAverage performance of visual decoder for all animals (dots, n = 8), prior to
stimulus onset (PRE), during stimulus (ON), and after stimulus (POST). Box and
whiskers denote 25–75, and 2.5–97.5 percentiles respectively, midlines are mean,
notches are 95% confidence level error of the mean. Gray dashed line indicates
shuffled baseline. d Contributions of individual neurons to the visual decoder
(decoderweights) arranged according to themagnitudeof theweights. e-g same as
(b–d) but for decoding context from the population activity. Ordering of neurons
on g is the same as that on (d). h Behavioral performance in ‘go’ or ‘no-go’, and
congruent or incongruent trials (top four panels) for an example animal. Darker

color indicates behavioral performance exceeding chance. Bottom panel: Con-
sistent (purple) and exploratory trials (orange). i Context decoders, as in (e), using
only consistent (purple) or exploratory (orange) trials from both contexts; s.e.m. of
leave one out mean accuracy (bands), effective chance level (gray dashed line),
same animal as (h). j Distribution of time-resolved accuracy difference between
consistent and exploratory accuracy, excluding timepoints where both consistent
and exploratory accuracies arebelow chance for individual animals (left), and for all
animals concatenated (right); each animal has nT > 450 time points for the dis-
tribution, boxplot parameters as in (c).kCombination ofmultipleDVbases forms a
new basis that defines a higher dimensional subspace of task relevant population
activity. l Population responsesof anexample animal, averagedover thefirst 1.5 s of
stimulus presentation projected on the DV subspace in individual trials (dots), and
their estimated normal distribution (mean and 2 std, shaded ovals) in different task
contexts (dark and light) andwith different visual stimuli presented (red and green).
Purple and blue lines denote the DV directions of context and visual decoders,
respectively. Histograms show population responses projected on orthogonal
components of single DVs. m Histogram of the angle between context and visual
DVs across animals (dots). n Time course of the angle between the visual and
context decoders throughout the trial, distribution of animals (n = 8, gray faint
lines) mean (purple thick line) and s.e.m. (faint purple band).
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Context representation in the absence of stimulus
Task context is not independent across trials since context is invariant
in a given block, therefore context needs to be maintained during the
intertrial intervals. Time-resolved decoding of context demonstrated
persistent context-related activity during pre-stimulus and post-
stimulus activities with similar decoder accuracies (Fig. 3b, pre-
stimulus mean accuracy across animals 0.63 ±0.04, during stimulus
mean 0.69 ± 0.05, post-stimulus mean 0.67 ± 0.03). Context decoder
accuracy varied across animals but decoding accuracy before and
during stimulus presentation were strongly correlated (Fig. 4a,
R = 0.82, p =0.002). By controlling for the number of units in the
analysis, we confirmed that this dependency was not solely dependent
on the number of neurons recorded (Supplementary Fig. 4).

Despite the constant presence of the context signal throughout
the trial, it remained uncertain whether the context representation
during pre-stimulus and on-stimulus activities were invariant or
underwent dynamical transformations. We investigated this question
by time-shifted decoding: we constructed decoders at reference time
points and tested them at different time points during the trial
(Fig. 4b). As a reference, we performed the analysis on visual signals.
Time-shifted visual decoder performance was relatively stable even
with long time shifts. Time-shifted decoding for all training and testing
time points revealed a persistent and stable representation through-
out stimulus presentation (Fig. 4c). Stability of the representation was
quantified by calculating the slope of the linear fit on the time-shift-
dependent decoding performance (Fig. 4c inset). As expected, the
decay rate was low during stimulus presentation (Fig. 4d). Consistency
of the representation was also assessed by calculating the angle
between DVs of decoders trained at different times (Fig. 4e). DV angle
dropped from close to 0 to about 45 degrees with small time differ-
ences but remained stable throughout the stimulus presentation.

To assess the stability of the context representation throughout
the trial, we performed time-shifted decoding analysis. The decay of
the time-shifted accuracy appeared to be faster for task context than
for the visual content (Fig. 4d, g, 8 mice, average decay rate during
stimulus, dependent one-sided t-test p =0.05). Importantly, during
both the pre- and on stimulus periods the time-shifted decoding
showed a relatively stable representation of task context (−1500 to
−500 and 1000 to 2000 ms average decay rate of 0.26 ± 0.05 and
0.26 ± 0.05 accuracy loss/100ms, respectively, n = 8 mice), but sti-
mulus onset was characterized by an abrupt decay (−200 to 200ms
average decay rate of 0.45 ± 0.09 accuracy loss/100ms, 8 mice,
Fig. 4g). This finding was corroborated when assessing larger than
100ms time-shifted DV accuracies (Fig. 4f, example animal) and
angles (Fig. 4h, example animal) during the whole pre- (Fig. 4f inset,
yellow, bottom left), and on-stimulus (Fig. 4f inset, yellow, top right)
periods, as well as across their borders (Fig. 4f inset, red): There
were higher accuracies and smaller angles both within the pre-
stimulus (0.64 ± 0.03, σ = 0.09 and 51.9 ± 4.8°, σ = 13.5°) and within
the on-stimulus periods (0.65 ± 0.03, σ = 0.09 and 49.1 ± 4.7°,
σ = 13.2°), but low accuracies and closer to orthogonal angles across
the border of pre- and on-stimulus activities (0.57 ± 0.03, σ = 0.08
and 76.4 ± 5.7°, σ = 16.2°, all mice, n = 8). Such drop in across-time
decoding performance and increase in decoder angles indicated
that the neuronal population activity underwent a transformation
upon stimulus onset. This corresponded to a change in modulation
of individual neurons (Fig. 4i, j). Such transformation was char-
acteristic to most animals (Fig. 4f, example animal) but some ani-
mals displayed more stable context representation (Fig. 4k, second
example animal). To assess if the persistence of context repre-
sentation in these animals can be characterized by the one-
dimensional space defined by our linear context decoder, we
investigated the nullspace of the context DV, i.e. the activity sub-
space which the direction of the decision vector was subtracted
from (Fig. 4l, see “Methods”). We found that in these animals

context could be decoded from the nullspace and across-time
decoding displayed abrupt changes at stimulus onset and stimulus
offset (Fig. 4l). This suggests that the population consists of neu-
rons that persistently represent context (Fig. 4i, j), but a large
subpopulation of neurons undergoes a transformation upon sti-
mulus onset (Fig. 4i, j). Defining the lack of stability to stimulus
perturbation, “blockiness”, as the difference in accuracy across the
pre- and on-stimulus borders (Fig. 4f, see “Methods”), we found that
blockiness increases significantly when decoding from the null-
space of the context decoder compared to the full neural space
(p = 0.029, two-sided paired t-test, n = 5 animals, Fig. 4n). Note, that
we only included animals whose mean off-diagonal pre and on sti-
mulus (Fig. 4f inset, yellow), or mean nullspace-decoded accuracies
were above shuffle control. In summary, while task context is
represented throughout the trial in V1, stimulus onset perturbs the
context representation observed during the pre-stimulus period.

Context invariant visual responses
Contextual modulation of V1 responses and stimulus-induced
responses were shown to affect overlapping neuron populations
(Fig. 3d, g). It is therefore critical to assess if the contextual signal
interferes with the sensory signal. We address this issue by investi-
gating how the exact same stimulus affects the population under dif-
ferent contexts.

We investigated the temporal evolution of population activity in
the subspace defined by the visual and context decoders and calcu-
lated the trial-averaged neural responses to either 45 or 135 degree
gratings in the two contexts for correct trials (Fig. 5b). Change in
context introduced a shift in the trajectory but left the time course of
the response largely intact (Fig. 5b–d). In the visual subspace, the
across-animal contextual difference of population responses was
relatively small (0.30 ±0.003) compared to the projected absolute
standardized mean rates (mean 1.01 ± 0.008, std 0.76, n = 8 animals ×
300 timepoints), and varied over timepoints within a small portion of
the distribution of differences (std 0.23, Fig. 5e, g). In contrast, in the
context subspace typical projection rates were smaller (mean
0.55 ± 0.004, std 0.40, n = 8 animals × 300 timepoints), while themean
difference (0.71 ± 0.006) was larger than in the visual subspace
(p <0.05 at all timepoints between 500–2500ms after stimulus onset,
two-sided two-sample t-tests for each timepoint and both of 45 and 135
gratings), while it had larger variance (std 0.24 and 0.42, Fig. 5f, h). To
quantify the invariance of visual representational subspace, we con-
structed separate visual decoders in the two contexts. We character-
ized individual animals by the difference of time-averaged visual
decoders from the first 500ms of stimulus presentation (Fig. 5a). We
limited averaging to the first 0.5 s of stimulus presentation to avoid
interference with choice-related activity. Although the mean accuracy
difference varied across animals, their average was not distinguishable
from0 (two-sided t-test, p =0.24). Thus, a change in task context shifts
the entire visual response trajectory in a subspace orthogonal to the
one encoding visual information, while leaving the visual dimension
invariant across contexts.

We repeated the analysis for the auditory modality, and found
similar results (two-sided t-test, p =0.65, Supplementary Fig. 5h).
Although V1 is not the primary area of low-level audio information
processing, our results reveal a consistent representational scheme for
visual and auditory variables.

Choice- and context-related activity in V1 are orthogonal
Both individual neurons and population responses showed sensitivity
to the choice animals were about to make. Choice-related activity was
not expected to be independent from activity related to stimulus
identity since the choice depended on it. Indeed, projecting neural
activity onto visual-choice or audio-choice subspaces in each context
showed that hit and false alarm choices correlated with ‘go’ signals, as
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well as correct rejections and misses correlated with ‘no-go’ signals,
thus neural response patterns appeared in a skewed geometry (Sup-
plementary Fig. 6a, b, example animal). We found that the angles
between DVs for stimuli and choice were 57.52 ± 6.29° in the visual
context, and 65.47 ± 5.67° for the auditory context, significantly below
90° (one-sided t-test, pvisual = 0.001, paudio = 0.002, Supplementary
Fig. 6c, d, distribution from all animals). We performed an additional
control by testing the independence of visual and audio

representations, as would be expected based on their presentation
statistics. Indeed, their representationswere orthogonal to eachother,
evidenced by the angle between the visual and audioDVs derived from
the first 500ms of all trials (91.06 ± 3.13° over mice, not differentiable
from 90°, t-test p = 0.76).

To investigate the relationship of choice-related activity to the
representation of context, we constructed a linear decoder for choice
(Fig. 6a). Choice could be decoded throughout the trial and also after
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stimulus offset, with higher decoding accuracy towards the end of the
stimulus presentation period (Fig. 6b, accuracy early 0.61 ± 0.02, late
0.69 ±0,03, one-sided dependent t test p =0.016, 8 animals). Applying
MDSA to the choice and context decoders reveals a close to ortho-
gonal relationship between them (Fig. 6c), whichwas consistent across
animals (choice DVs assessed separately in attend: 88.8 ± 3.4°, and
ignore: 86.8 ± 2.8°, Fig. 6d). Multiple sources contribute to choice-
related activity, which includes both cognitive factors, such as reward
expectation, and movement-related activity, such as preparation of
action or locomotion. These factors cannot be distinguished by our
analysis but the orthogonality to the context DV demonstrates that
choice-related activity comprises a context-independent source of
variance in V1.

Controlling for movement related activity
In our paradigm, task context was stable in the first half of the session
and was switched in the second half of the session. As a consequence,
changes in movement patterns that occur between these periods can
introduce confounds in our analysis of context representation since
differences in movement-related activity could be picked up by the
task context decoder. To rule out these potential confounds we
devised a locomotion matching and a video capture-based motion
controls.

We used locomotion data to match the distribution of running
speeds across task conditions, similar tofiring ratematching18 andmean
matching19 (“Methods”). Briefly, we constructed a joint distribution of
running speeds and population activities in 50-ms windows. Thus, any
given time window in a trial yields a point in the multi-dimensional
space of running speed and population activity. To reduce sampling
noise in this distribution, we collected data from multiple consecutive
time windows and data points from these time windows were collec-
tively used to construct a single distribution (Fig. 7a). Separate dis-
tributions were constructed for the two task contexts. To control for
running speed differences in the two task contexts, we randomly sub-
sampled the joint distribution such that the running speed histograms
were matched across contexts (Fig. 7b, c). We found no difference
between context decoder accuracies in matched and non-matched
trials (Fig. 7d): differences are substantially smaller than the variance
yielded by repeated sampling for all animals involved in locomotion
matching (Fig. 7e, n = 3, average of means and standard deviations
0.0059 ±0.0011, and 0.0212 ± 0.0011, respectively). Potential delayed
effect of locomotion on V1 activity was investigated by time shifts
between the locomotion and neural response data at 100 and 200ms
time windows. We found no effect of this shift on locomotion-matched
context decoding performance (Fig. 7f).

Due to the movement asymmetry of ‘go’ and ‘no-go’ trials, we
tested whether context is still decodable if licking trials are omitted.
Note that stimulus statistics had to be identical in the two contexts,
thus only congruent trials were used. Using correct ‘no-go’ trials, there

was no difference between the accuracy of the context decoder
compared to the casewhen all trialswere included (Fig. 7g, all animals).

To determine ifmovement-related activity other than locomotion
or licking contributes to decoding context, we performed an addi-
tional control by recording video ofmovement using infrared cameras
while recording population activity (see “Methods”). We used two
methods to characterize the spatial correlations in video recordings. In
the first approach we performed dimensionality reduction on the
video stream by applying PCA12 (see also “Methods”). From the PCA
bases we reconstructed the video stream from the first 40 PC time
series to assess whether they capture important movements and are
free from other noise (Fig. 7h, Supplementary Fig 7i). We tested con-
text representation in trials where movement power was below a
threshold derived from the video recordings (Supplementary Fig. 7a).
We defined absolute motion as a smoothed average over movement
PCs (see “Methods”). Varianceover PCsmostly depended on themean,
especially at lower values, reassuring us that we did not incorrectly
omit largemovements capturedby fewPCs below the absolutemotion
stationarity threshold (Supplementary Fig. 7b, c). We allowed sta-
tionary trials to have a proportion of timepoints exceeding the
threshold (Supplementary Fig. 7d, e, example decoder accuracy time
course with fixed threshold = 0.4 and proportion allowed = 0.1, Sup-
plementary Fig. 7a, e, i). We assessed context decoding under a range
of thresholds (0.2–2.0) and proportions (0.05–0.50), and showed that
stationary ormotion trials had no difference in context representation
(Fig. 7j). Note that as expected ‘no-go’ trials are over-represented in
stationary trials (Supplementary Fig. 7f). We also tested the context
signal at different motion intensities. For this, we calculated motion
intensities from the video recordings and defined fixed intervals of
motion intensities. We constructed context decoders for different
time points during trials such that the number of trials was equalized
across contexts. We found that context is decodable from these
motion intensity-controlled trials (Fig. 7k, see “Methods”). We found
slight differences in movement levels between the two contexts
(Supplementary Fig. 7g). Although this effect is eliminated by the
equalized levels, we added a second analysis complementing the glo-
bal PCA method. We identified a number of regions of interest corre-
sponding to body parts of the animal (Supplementary Fig. 8a, see
“Methods”), and calculated the mean absolute motion level for each
body part from the differential intensities. The distribution of motion
levels were either identical or close to identical in the two contexts for
most of the body parts (Supplementary Fig. 8b). To eliminate body
part movement that can cause different neural patterns between the
two contexts, we again decoded context from an equalized number of
trials from both contexts available at various motion levels (“Meth-
ods”). In this analysis, similar to the PCA based absolute motion level
distribution equalization above, only those timepoints and motion
levels were used in the averaging, which had at least 5 trials in each
context. The detailed multi-body part movement equalization did not
have any effect in context decoding from V1 activity, when compared

Fig. 4 | Stability of context representation. a Relationship of context decoder
accuracies in the intertrial interval and during stimulus presentation. Gray dashed
line indicates shuffled baseline. Line, R2 and p values indicate Pearson-correlation,
two-sided Wald-test t-statistics (n = 8 animals). b Accuracy of time-shifted visual
(blue) and context (magenta) decoders. Decoder was trained at a reference time
point (gray vertical line) at pre-stimuls (left) and on-stimulus (right) periods. Gray
dashed line as in (a). c Generalization of the visual decoder across time. Perfor-
mance (color scale) of decoders trained (vertical axis) and tested (horizontal axis) at
different time windows. White shading, decoder performance under shuffled
baseline. Inset, a cross section of the main panel. Black line, linear fit characterizing
the rate of performance decay. d Smoothed rate of decay at each timepoint in 500-
ms windows (thin lines: individual mice, thick line: mean, shading: 2 s.e.m).
e Relative angle between the DVs of visual decoders trained at different time win-
dows. f–h Same as c–e but for the context variable. Inset below (f) indicates time-

shifted decoder matrix elements for within pre- and on-stimulus periods (yellow)
and elements for time-shifts across the border of stimulus onset (red). ‘Blockiness’
= yellow - red. i Context decoder coefficients (color code) at each timepoint for all
animals (n = 8) concatenated. Neurons (vertical axis, n = 196) ordered according to
mean coefficients during the pre-stimulus period. j Same as i, but ordered
according to the on-stimulus period. k Same as f, for a second example animal.
l Schematics of the definition of DV nullspace.m Same ask, but context is decoded
from the context nullspace. n Time-averaged diagonal context accuracies from the
full neural activity space (violet) and from the context nullspace (light pink),
depending on the blockiness in the same subspaces. Dots and lines represent
individual animals, p-value of two-sided dependent t-test between blockiness from
nullspace and full space (n = 5 and m= 5 for 5 animals, left and right triangles
correspond to animals on f and k, respectively). Gray dashed line:Mean accuracies
above randomized chance averaged over all animals.
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to an equalized but motion level-shuffled trial randomization (Sup-
plementary Fig. 8c).

In summary, our analyses did not identify any motion-related
contributions to the contextual signal in V1.

Discussion
We showed the existence of a neuronal population representation of a
cognitive variable, task context, in V1. Importantly, task context was a
latent variable since it was not directly cued andwas therefore inferred
by the animal through the contingencies between multimodal stimuli
and water rewards. Behavioral performance of animals correlated with
context representation: blocks of trials in which animals were per-
forming the paradigmwellwere characterizedwith better decodability
of the context signal. Representation of task context was ‘mixed’ with
that of visual stimuli since overlapping populations showed sensitivity
to both. Multi-dimensional subspace analysis revealed orthogonal
representation of task context and visual grating stimuli. This multi-
plexed representation of task variables not only spanned visual and
context signals, but extended to responses to auditory signals as well.
Furthermore, despite engaging overlapping populations, task context
did not affect the population dynamics induced by visual stimulus
presentation andwas therefore represented independently fromvisual
stimuli. We found a strong signal associated with task context not only
during stimulus presentation but also in the inter-trial intervals. While
the strength of task context representation duringon-stimulus andoff-
stimulus periods was strongly correlated, the representation under-
went a transformation: stimulus onset was characterized by a

dynamical shift in the linear subspacewhere context-related variability
could be identified. In summary, V1 integrates visual inputs with other
sensory and cognitive variables by multiplexing these signals, thus
ensuring the maintenance of task-relevant variables while avoiding
interference with the visual representation.

Flexible use of available information is critical for intelligent
behavior20. Depending on the context, the same sensory stimulus can
evoke vastly different behavioral patterns. Based on behavioral mea-
surements alone, previous studies have proposed that task context is
represented through the discovery of latent variables21–26. Such latent
variable representations were shown to be necessary for efficient
learning inmultiple cognitive domains20,24,25,27. The details of the neural
representation of such latent variables have remained elusive.
Experiments in both rodents and humans indicate the contribution of
the orbitofrontal cortex to the maintenance of latent variables28,29. In
light of these studies, our results suggest that the effects of the latent
task context can be identified as early as the primary visual cortex.
Note, that our analyses did not establish a direct link between the
observed contextual signal and the rules of the task, therefore the
semantics of this signal cannot be unambiguously established. Our
findings provide insights into the properties of latent variable repre-
sentations, yet the way the primary visual cortex contributes to task-
dependent processing of sensory signals remains to be established.

Rule or context selective neural firing has been repeatedly
observed in frontal and parietal cortices30–34. Whether these neural
dynamics impact firing in primary sensory cortices during context-
dependent decision making is poorly understood. During context-

Fig. 5 | Effect of context onprocessing visual information. aDistribution (violins)
withmeans (horizontal lines) of visual decoder accuracy differences between visual
and audio context over each timepoints of the first 500ms for individual animals
(left ten plots), and for all mice combined (rightmost) b Average time course of
population trajectory (line: mean, band: 1 s.e.m.) during the on-stimulus period
projected on the context and visual DVs for different visual stimuli and for different
contexts (light and dark colors) for an example animal.Disks: stimulus onset. Purple
and blue lines indicate context and visual DVs respectively. c Average time course
of the population response to different stimuli projected on the visual DV for the

same animal as in (b). Colors as in (b). d Same as panel c, but projected onto the
contextDV. e,gAbsolute differences of visualDV-projectedpopulation trajectories
betweendifferent task contexts for the 45° and 135° stimuli, respectively. Individual
animals (thin gray lines), mean (thick colored line) and 1 s.e.m. (colored bands) at
each timepoint over all animals (n = 8). Right insets: Histogram of differences from
all timepoints and animals (gray line), temporal average of the across-animal mean
time course (colored lines), shaded bands correspond to one standard deviation.
f, h Same as e, g, but for context DV-projections.
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dependent decision making in non-human primates, the prefrontal
cortex (PFC) was shown to receive unfiltered visual information which
undergoes differential dynamics based on the appropriate context35.
The study argued against the alternate scenario where top-down input
acts within V1 to select the contextually appropriate input and relays
only those to PFC. While in our study context was uncued and was
therefore required to be maintained across multiple trials, our results
provide additional insight into this question: contextual information
shapes the activity in V1, it does so in a subspace orthogonal to the
representation of stimuli and leaves stimulus-related V1 dynamics
intact. This is also consistent with previous work showing context-
dependent changes in the stimulus selectivity of population responses
in mouse V16,36 or context-dependent modulation of V1 firing during
navigation37.

The context-dependent changes we identified in V1 population
responses can be interpreted as a source of noise correlations. Our
results show that these changes are orthogonal to the stimulus
dimension and therefore do not contribute to information limiting
correlations38. A recent study in non-human primates has high-
lighted that a feedback-driven component of noise correlation that
is measured within a given task context changes across tasks and
displays a structure reminiscent of information limiting
correlations39. Thus, noise correlation measured within a task con-
text and across task contexts might indicate different feedback
components and their relationship can reveal the exact mechanism
of context-dependent modulations40,41. Such context-dependent
changes in noise correlations are not constrained to V1 but can be
identified in MT and IT as well42–44. Recently, analysis of the choice-

Fig. 6 | Choice-related activity. a Decoder performance in 50-ms sliding windows
for the choices of an example animal (‘lick’/‘no-lick’). Gray dashed line indicates
shuffledbaseline.bAverageperformanceof choicedecoder prior to stimulus onset
(PRE), during stimulus (ON), and after stimulus (POST), for all animals (dots, n = 8).
Box and whiskers denote 25–75, and 2.5–97.5 percentiles respectively, midlines are
means, notches are 95% confidence levels. Gray lines as in (a), but averaged over
animals. cPopulation responsesprojectedon theDV subspaceof context (magenta
line) and choice decoders (yellow line) in individual trials (dots) and their estimated

normal distribution (mean and 2 std, shaded ovals) in different task contexts (left
and right panels) and with different choices the animal made (orange and red for
‘lick’ and ‘no-lick’, respectively) for an example animal. Since the choice decoder
changes across task contexts, different DV subspaces are used (left and right panels
for ‘attend’ visual and ‘ignore’ visual context, respectively). Distributions show the
marginal of population responses (gray lines indicate the distributions for the
opposite context). d Histograms of the angle between context and choice DVs
across animals (dots) in the two task contexts (left and right).
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Fig. 7 | Controlling for locomotion intensity differencesbetween task contexts.
a Example histograms of running speed at three time points during the trial (thin
lines) and summary histogram over the time points (thick line). Histogram shows
trials from the attend visual context. b Task-context specific running speed histo-
grams. Histograms show summary histograms. Running speed distributions in the
two contexts arematched by subsampling trials (shading). c Schematics illustrating
run speed matching in the population activity space. Trial-by-trial population
responses (circles) on a subspace spanned by the context DV and a direction per-
pendicular to that. After subsampling trials (filled circles) the distributionof running
speed is equal in the two contexts (filled circles). dMean context decoder accuracy
of 10 locomotion matched subsamplings (magenta) and randomized control with
same trial numbers (black). Shading shows 2 s.e.m. Gray dashed line indicates
shuffled baseline. e Difference between run speed-matched and control decoder
accuracies in a population ofmice.Whisker plots indicate distributionover time (nT
= 596 timepoints, whiskers between 5–95%, box between 25–75%, notch: median,
95% CI, flyers include all points). f Matched accuracies at single time points along

the trial (colored lines), with run speed shifted relative to neural activity (horizontal
axis), example animal. g Accuracy of context decoding using all trials (magenta)
and correct ‘no-go’ congruent trials only (red) at each timepoint,meanof n = 8mice
(line) and s.e.m. over mice + mean s.e.m.-s from cross-validation variance (bands).
h Reconstruction frommotion principal components. 6 subsequent frames (left to
right): Original capture (top), smoothed difference from a moving average back-
ground (upper middle), reconstruction of difference from 40 PCs (lower middle),
cumulative sum of the difference reconstruction (bottom). Absolute motion, i.e.
mean of absolute values of 40 PCs, and s.e.m (bottom graph). i Accuracy of context
decoding using all trials (magenta) and stationary only trials (purple) at each
timepoint, s.e.m. over 10-fold cross validation (bands). j Mean context decoder
accuracy over the trial time course of stationary trials at different absolute move-
ment thresholds (horizontal axis) and proportion of timepoints allowed to exceed
the threshold (colored lines). Mean s.e.m. over the time course (bands). k Mean
accuracy over the time course from context-equalized number of trials at various
absolute motion level intervals (line), and s.e.m (band).
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related activity in MT of non-human primates demonstrated that
much of the choice-related activity is orthogonal to the stimulus-
induced variance45,46. Our results are consistent with this view and
highlights that task-relevant variables partition the activity space
into orthogonal subspaces.

We found that the context signal undergoes a transformation
during the transition between off-stimulus and on-stimulus conditions
but remains relatively stable within the conditions. This observation
can be puzzling since the contextual variable is invariant across the
conditions. Such transformation can be interpreted as changing fixed
points that the network converges to in the two conditions. Recent
work on recurrent dynamics in networks has started to uncover the
properties of condition-dependent fixed point dynamics, and low
dimensional dynamics in independent subspaces47. In our study, the
transformation of the context representation could not be traced back
to a simple dynamics in which a subpopulation of neurons switched
their activities between conditions since a set of neurons displayed
stable contribution to the context decoder throughout the trial. Our
findings show that while it is possible to read out from the population
activity the task being performed throughout the trial with simple
linear decoders, only a select number of neurons is appropriate to
construct a decoder that works equally well during and before task
execution.

V1 activity is strongly modulated by locomotion5,48,49. In fact,
recent studies suggest that the majority of stimulus-unrelated activity
in V1 is associated with locomotion and movement12. Importantly, this
study also implied that this stimulus-unrelated component of activity
shares the subspace with off-stimulus activity. This subspace shared a
single lineardimensionwith stimulus-evoked activity.Wedemonstrate
that beyond movement-related signals, signatures of task context can
also be identified in the off-stimulus activity. We found a similar
orthogonal relationship between the subspace occupied by task con-
text and that of visual stimuli (albeit our stimuli were simpler). In order
to exclude the possibility that the task context signal identified in the
analysis is contaminated by variations in locomotion patterns we
performed a range of control analyses and confirmed that the identi-
fied task context representation was unaffected by variations in var-
iations in a range of instructed and uninstructed movement patterns.
We also demonstrated using video capture that context is invariantly
represented in V1 in a number of control conditions: 1, when solely
selecting stationary trials; 2, when lick’ trials are excluded; 3, when
trials are subsampled to equalize the distributions of movement
intensities in various body parts. On the time scale of the context
variable, other factors, such as success rate related changes in stress or
frustration, might undergo modulations. However, trial-by-trial mod-
ulations in the context signal, as revealed by stronger context signal
before an upcoming successful choice, modulation of the context
signal within the trial, and relatively balanced performance in the two
contexts for many of the recorded animals makes these factors less
likely to account for the range of observations related to the context
signal we identified.

How does contextual information reach V1? As V1 receives top-
down inputs from anterior cingulate50,51, motor, premotor,
retrosplenial52, posterior parietal53,54, and higher visual cortices55, as
well as ascending inputs from lateral posterior thalamic nucleus56,
multiple direct and indirect inputs could contribute to contextual
information in V1. An indirect route from the medial prefrontal cortex
through the basal ganglia57 can inhibit irrelevant information58. Besides
thesepathways, auditory information can reachV1directly aswell9,59–61.
Ultimate answer to how contextual information is built up in V1 will
require recordings from and causal manipulation of neurons project-
ing to V1 during the task. Chronic recordings from these areas will be
critical for understanding how these representations emerge across
days. Novel computational tools to track uninstructed changes in
behavioral strategies62 are critical for a deep understanding of the

computations taking place in cognitively demanding tasks such as the
set shifting task investigated here.

Methods
Surgery
All experimental procedures were approved by the University of
California, Los Angeles Office for Animal Research Oversight and by
the Chancellor’s Animal Research Committees. 7–10 weeks oldmale
and female C57Bl6/J mice were anesthetized with isoflurane (3–5%
induction, 1.5% maintenance) ten minutes after intraperitoneal
injection of a systemic analgesic (carprofen, 5mg/kg of body
weight) and placed in a stereotaxic frame. Mice were kept at 37 °C at
all times using a feedback-controlled heating pad (Harvard Appa-
ratus). Pressure points and incision sites were injected with lido-
caine (2%), and eyes were protected from desiccation using artificial
tear ointment. The surgical site was sterilized with iodine and
ethanol. The scalp was incised and removed, and a custom-made
lightweight omega-shaped stainless steel head holder was implan-
ted on the skull using Vetbond (3M) and dental cement (Ortho-Jet,
Lang), and a recording chamber was built using dental cement. Mice
recovered from surgery and were administered carprofen for
2 days, and were administered amoxicillin (0.25 mg/ml in drinking
water) for 7 days. Mice were then water-deprived and trained to
perform the behavior (discussed below).

Approximately 24 h before the recording,micewere anesthetized
with isoflurane, a small craniotomy (0.5mm diameter) was made
above the right cerebellum and a silver chloride ground wire was
implanted within the craniotomy and fixed in place with dental
cement. A circular craniotomy (diameter = 1mm) was performed
above the right V1 (V1 targets were determined by regression of adult
brain lambda-bregma distances: 1.7–2.5mm lateral and 0.0–0.5mm
rostral to lambda). The exposed skull and brain were covered and
sealed with a silicone elastomer sealant (Kwik-Sil, WPI). On the day of
the recording, the mouse was placed on the spherical treadmill and
head-bar fixed to a post. The elastomer sealant was removed and the
craniotomy chamber was filled with cortex buffer containing 135mM
NaCl, 5mM KCl, 5mM HEPES, 1.8mM CaCl2 and 1mM MgCl2.

Behavioral training
Following implantation of the headbars, animals recovered over
3 days, and received 10 to 20min of handling per day, thus habituating
the animals to human interaction for 4 days. Animals were then water-
deprived, receiving approximately 1mL of water per day. During this
time, animals were placed on an 8-inch spherical treadmill (Graham
Sweet) in the behavioral rig for at least 3 days to habituate to head-
fixation for 15minper day. The spherical treadmill was a Styrofoamball
floating on a small cushion of air allowing for full 2D movement
(Graham Sweet, England). The animal’s weight was measured daily to
ensure no more than approximately 10% weight loss.

Animals were first trained to perform unimodal visual and audi-
tory ‘lick’/‘no-lick’ (‘go’/‘no-go’) discrimination tasks. Licks are detected
by using a lickometer (Coulbourn Instruments). Lick detection, reward
delivery and removal, sensory stimulation and logging of stimuli and
responses were all coordinated using a custom-built behavioral
apparatus driven by National Instruments data acquisition devices (NI
MX-6431) controlled by custom-written Matlab code. A 40-cm (diag-
onal screen size) LCD monitor was placed in the visual field of the
mouse at a distance of 30 cm, contralateral to the craniotomy. Visual
stimuli were generated and controlled using the Psychophysics
Toolbox63 in Matlab. In the visual discrimination task, drifting sine
wave gratings (spatial frequency: 0.04 cycles per degree; drift speed:
2 Hz; contrast: 100%) at 45°,moving upwards, were pairedwith a water
reward. Drifting gratings of the same spatial frequency but at 135°
orientation, moving upwards, signaled a rewardwould not be present,
and the animal was trained to withhold licking in response to the
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stimulus. The inter-trial interval was 3 s, except for trials in which the
animal had a miss or false alarm, then the inter-trial interval was
increased to 6.5 s. The animal’s behavioral performance was scored as
a d′measure, defined as the z-score of the hit rate minus the z-score of
the false alarm rate, where z-score is the inverse cumulative function of
the normal distribution, converting a probability to units of standard
deviation of the standard normal distribution, with smallest allowed
margins of 0.01 and 0.99 rates. Once animals reached expert perfor-
mance (d′ > 1.7, p < 0.001 as compared to chance performance,Monte-
Carlo simulation), they were advanced to learning the auditory dis-
crimination task where a low pure tone (5 kHz, 90dB) indicated that
the animal should lick for reward and a high tone (10 kHz, 90dB)
indicated that the animal should withhold licking. The inter-trial
interval was similarly 3 seconds and the inter-trial interval was
increased to 9 s after misses or false alarms. After animals learned the
auditory discrimination task (d′ > 1.7) they were trained to perform the
multimodal attention task. In this phase, animals first performed one
block of visual discrimination (30 trials). If their performance was
adequate (d′ > 2.0, correct rejection rate > 70%, hit rate > 95%) they
thenperformed the visual discrimination taskwith auditorydistractors
present (the high or low tones) for 120 trials. Then, after a five-minute
break, they performed the auditory discrimination task for 30 trials
and if their performancewas adequate (d′> 2.0, correct rejection rate >
70%, hit rate > 95%), they performed auditory discrimination with
visual distractors present (oriented drifting gratings at 45° or 135°
described previously). During each training day and during the elec-
trophysiological recordings, each trial set started with 30 trials where
only visual or auditory stimuli were delivered which signaled whether
the animal should base its decisions on the later multimodal trials to
visual or auditory stimuli respectively. Each trial lasted 3 s. When the
cue stimulus instructed the animal to lick, water (2 µl) was dispensed
two seconds after stimulus onset. No water was dispensed in the no-
lick condition. To determine whether the animal responded by licking
or not licking, licking was only assessed in the final second of the trial
(the response period). If the animal missed a reward, the reward was
removed by vacuum at the end of the trial. Animals performed
300–450 trials daily. Only one training session was conducted per day
with the aim to give the animal all their daily water allotment during
training. If animals did not receive their full allotment of water for the
day during training, animals were given supplemental water one hour
following training. Whether the animal started with the attend- visual
or ignore-visual trial setwas randomized. Importantly, themonitorwas
placed in exactly the sameway during the auditory discrimination task
as it was placed during the visual discrimination task, and a gray
screen, which was identical to that during the inter-trial interval of the
visual discrimination task and isoluminant to the drifting visual cues,
was displayed throughout auditory discrimination trials. As a result,
the luminance conditions were identical during visual and auditory
discrimination trials.

Motion detection
Head-fixed animals run on a treadmill consisting of an 8-inch Styr-
ofoam ball (Graham Sweet) suspended 2mm above an 8.5-inch Styr-
ofoam cup (Graham Sweet) using pressurized air. Mouse treadmill
rotation was recorded as an analog signal, using a custom printed
circuit board based on a high sensitivity gaming mouse sensor (Avago
ADNS-9500) connected to a microcontroller (Atmel Atmega328). The
signal was initially recorded along with electrophysiology at 25 kHz,
then down-sampled to 1 kHz, and low-pass filtered <1 Hz with a first
order Butterworthfilter. The processed signal was treated as a proxyof
velocity. 6 animals were available for running speed measurements.

Infrared light and filter were placed in the box facing the mice. A
camera (BFLY-U3-23S6M-C, FLIR) with zoom lenses (Zoom 7000
18–108mm, Navitar) acquired images synchronized with TTL pulses
triggered by FG085 miniDDS square function generator, at 20 frames/

s. The stream was saved as 8 bit grayscale video of 1980 × 1024 pixels.
The side of the animal, where both large body, ear, and paw move-
ments, as well as whisker and licking movements were visible in a
cropped frame of 1398 × 574 pixels.

In-vivo electrophysiology recordings
Extracellular multielectrode arrays were manufactured using the same
process described previously64. Each probe had 2 shanks with 64
electrode contacts (area of each contact0.02μm2) on each shank. Each
shank was 1.05mm long and 86 μmat its widest point and tapered to a
tip. Contacts were distributed in a hexagonal array geometry with 25
μm vertical spacing and 16–20 μm horizontal spacing, spanning all
layers of V1. Each shank was separated from the other 400 μm. The
electrodes were connected to a headstage (Intan Technologies,
RHD2000 128-channel Amplifier Board with two RHD2164 amplifier
chips) and the headstage was connected to an Intan RHD2000 Eva-
luation Board, which sampled each signal at a rate of 25 kHz per
channel. Signals were then digitally band-pass-filtered offline
(100–3000Hz) and a background signal subtraction was performed64.
To ensure synchrony between physiological signals and behavioral
epochs, signals relevant to the behavioral task (licking, water delivery,
visual/auditory cue characteristics and timing, and locomotion) were
recorded in tandem with electrophysiological signals by the same
Intan RHD2000 Evaluation Board.

After performing the visual and auditory cross modal tasks,
drifting gratings were presented to map the orientation selectivity of
each recorded cell. A series of drifting gratings of 6 orientations
spaced by 30°, with both directions, randomly permuted, temporal
frequency = 2Hz, spatial frequency = 0.04 cycle per degree, contrast =
100%, was presented for 3 seconds, with a 3 second inter-trial interval,
with each different presented 10 times.

Acute microprobe implantation
On the day of the recording, the animal was first handled and then the
headbarwas attached to head-fix the animal on the spherical treadmill.
The Kwik-Sil was removed and cortex buffer was immediately placed
on topof the craniotomy inorder to keep the exposedbrainmoist. The
mouse skull was then stereotaxically aligned and the silicon microp-
robe coatedwith afluorescent dye (DiI, Invitrogen),was stereotaxically
lowered using a micromanipulator into the V1 (relative to lambda:
1.7–2.5mm lateral and 0.0–0.5mm rostral). This process was mon-
itored using a surgical microscope (Zeiss STEMI 2000). Once inserted,
the probe was allowed to settle among the brain tissue for 1 h.
Recordings of multiple single-unit firing activity were performed dur-
ing task engagement (approximately 1 h). After the recording, the
animal was anaesthetized, sacrificed, and its brain was extracted for
probe confirmation.

Data analysis
Behavioralmeasures. To quantitatively characterize the performance
of the animals, a four component sliding window averagemeasurewas
calculated through the session. The width of the window was carefully
optimized to 20 trials, to be long enough to capture consistent beha-
vior in consecutive trials (blocks), while short enough to be sensitive to
changes in behavior. The components were constructed for ‘go’ and
‘no-go’ signals, each having two for congruent (distractor would indi-
cate the same action as the active signal) and incongruent (distractor
signalwould indicate opposite of the active signal) trials. Themeasures
were calculated separately in the two contexts, thus including four
possible combinations for both audio and visual context. The width of
the sliding window was optimized to always include all four types of
trial combinations, while sensitive to response strategy switches of the
animal; we found that a 20-trial window adequately satisfied these
criteria. Consistent and exploratory trials were defined aswhen all four
moving averageswere above or belowchance (0.5), respectively. Thus,
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e.g. a trial would be exploratory, if any of the congruent ‘go’, incon-
gruent ‘go’, congruent ‘no-go’ or incongruent ‘no-go’moving averages
dropped to 0.5 or below. We modeled choices of mice during con-
sistent trial blocks via fitting various models to the p parameter of
Bernoulli distributions. First, to rule out that animals based their
choices on one of the modalities throughout the entire session, we
constructed a simple model with opposite modality targets for p (i.e.
p = 1 for audio signals in visual context and vice versa), comparing it to
correct targets (i.e. p = 1 for visual signals in visual context and vice
versa). Then we analyzed potential context unaware and non-context
related biased or random choices of animals. To assess a context-
unaware strategy, we fitted a single parameter p on the responses of
the animal, which characterized the tendency of the animal to lick at
the end of the stimulus presentation. We formulated two context-
aware strategies, both characterized with a single parameter. In the
bias model the ‘go’ trials were characterized by a certain behavioral
response, while ‘no-go’ trials were fitted with bias, β, that characterizes
the tendencyof lick in trials when the animalwas expected towithhold
lick. In the lapse model both ‘go’ and ‘no-go’ trials were characterized
by anerror rate ofλ, therefore the probability of lick in ‘go’ trialwas 1-λ,
while in ‘no-go’ trials it was λ. The p values of all models were clipped
between 0.001 and 0.999. Models were compared by their mean log
likelihoods over consistent incongruent trials. We also generated 100
000 random single-context sessions of 70 trials with responses from
the mean lick rate model at 75% lick rate, typical for incongruent trials
in the weaker performing context of animals. We then applied the
same moving average consistency criteria we used for mice. Then we
counted the number of consistent trials (N), and the length (L) of all
consecutive consistent blocks occurring at least once. We then calcu-
lated the approximate probability of and the cumulative probability of
having at least N consistent trials and L consecutive length. For refer-
ence, when applied in two contexts, the calculated probabilities need
to be raised to the square.

Single unit activities (SUA). SpikesortingwasperformedbyKilosort217,
and thenmanually curated in phy2 usingMATLAB and PYTHON to yield
single unit activities, with consistency criteria for autocorrelograms,
interspike interval histograms, waveforms, maximal amplitude elec-
trodelocations, lowfalsepositiveormissedspikesandalsostablefeature
projections throughout the recording session. Highly similar clusters
weremergedmanually if cross-correlation revealed identical refractory
periods and if interspike interval histograms and feature distributions
matched to provide a resulting unit without drift signs. Clusters were
split when PCA feature space and interspike interval histogram showed
mixtures of stationary distributions, and the cross-correlograms
improved. Putative excitatory and inhibitory cell types were dis-
tinguished based on spike waveform characteristics corresponding to
broad and narrow spiking. We applied a gaussian mixture model to
cluster in thetwodimensionsof timefromtroughtopeakandamplitude
ratios of trough and peak on all cells from all mice.

Exclusion criteria to control for drift. We took great care that only
units showing no statistically identifiable drift in firing responses were
included in the analysis. For this, signal-to-noise ratios of spike events
were trackedduring theparts of the recording sessionwhen the animal
performed the task. For any given unit, drift was identified using a set
of criteria on a long timescale. Specifically, we assessed the quality of
the unit based on (A) unit separability in feature space, (B) stationarity
of signal to noise ratio (S/N) and (C) stationarity of firing rate. We
excluded units that did not meet our criteria.

Spike counts. Spike counts were calculated in sliding windows in 10-
ms bins and smoothed using a symmetric Gaussian kernel (σ = 100ms,
optimized for linear decoding and typical firing rates). The kernel
method approximates single trial instantaneous rate (IR). IRs were

used in two distinct ways. First, we used IRs to assess absolute
instantaneous firing rates (FR) in Hz. Second, for methods requiring
standardized input, IRs were transformed to z-scores, with mean cal-
culated from prestimulus (from −1500 ms to 0ms) time-averaged
baseline activities, while standard deviation was calculated for the
whole trial. Sensitivity of single units to task variables was assessed by
the largest mean rate difference between trial averages during differ-
ent task epochs.

Neural activity vector. Neural activity vector (referred to as popula-
tion activity or activity) is defined as baseline-standardized SUA IRs as
components of a time-varying vector. Neural activity vector space,
specifically using the above coordinate system as basis, is defined as
the space of possible activity patterns the neuron population can take.
A single point in this neural activity vector space corresponds to IR for
each neuron, while trajectories describe dynamics of activity.

Individual cell sensitivity to task variables. Sensitivity was defined as
the differencebetweenmeanfiring rates at the two variable values (left
and right gratings for visual, low and high tone for audio, attend visual
and audio for context, ‘lick and ‘no-lick for choice) divided by the
standard deviation of the firing rates of the cell over all trials, averaged
over all timepoints separately during pre- and on stimulus.

Relative signal variance. Total variance for signals with multiple
conditions can be decomposed into the sum of noise variance and
signal variance. Noise variance is the expected value over the condi-
tions of the variances of the signal at specific conditions. Signal var-
iance is the variance over the conditions of the expected values of the
signals at specific conditions.

Vary½y�=Ex½Varyjx½yjx��+Varx½Ey½yjx��2,

where x runs over two values of the condition, e.g. 45° and 135° visual
stimulus, and y runs over the trials with y | x signifying trials condi-
tioned on the indexed values of x, e.g. only 45° trials. Relative signal
variance is a ratio of the signal variance and total variance, i.e. the
second term on the right hand side divided by the term on the left
hand side of the equation.

Principal component analysis
We concatenated neural activity of all time points along a trial for all
trials, capturing both trial to trial and within trial variance. Principal
component analysis was performed to obtain orthogonal directions by
ordered variances of population activity. Neural activity was projected
to various subspaces defined by a number of principal components
(PC) by dot products with PC unit vectors. Relative variances were
showncumulatively for activities projectedonagrowing subset of PCs.
Thus we defined relative signal variance to extend the fraction of
variance explained by the signal to a series of fraction of explained
variances at multiple projections onto growing PC subspaces. To
establish baseline signal variances of task variables, we repeated this
analysis with the mean variance of 20 random orthogonal projections
of the same dimensions as the increasing number of PCs.

Linear decoding
We regressed neural activity with task variables using predictive trial-
based cross-validation. Input to the decoder was a matrix with obser-
vations in different rows and features in columns. Observations were
trials, each labeled with task variables such as stimulus identity, task
context, and choice of the animal (licking or witholding licking). These
identified nominal variables each consistently grouped trials into their
respective two classes. Specific decoderswere trained by conditioning
on some of the non-decoded variables: for instance, on Fig. 5 we only
selected successful trials for training the decoder. Feature space
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representing activity of all units in a time-segment was constructed by
concatenating for each unit 5 consecutive 10ms width spike count
data points spanning 50ms, and concatenating these vectors for each
unit. The time resolution of the IFR kernel slide and the time-width of
the decoder were optimized to saturate information transfer from raw
data while preserving high time resolution. Classification of trials was
trained with logistic regression. Separate decoders were trained for
different time points of a trial with 10ms resolution. Decoders used all
single unit activities available, with the expectation that
discrimination-irrelevant features would be averaged out with a
Gaussian noise model in the log odds space. Unless otherwise noted,
all decoders were performed with class-stratified 10-fold cross-
validation. Decoder accuracy figures show means and two standard
errors of means of the 9 CV test runs for each timepoint. Averages
across mice only use the means, boxplots show animal population
mean and 2 s.e.m. for notches and 25–75, 5–95 percentiles for the
boxes and whiskers.

Cross-tested decoders were introduced to assess how a decoder
trained in one condition performs in another condition. A decoder is
trained at one particular time point of the trial and its performance is
tested at a different time point. To limit computational overhead, for
these time point cross-tested decoders were trained with a cross vali-
dation scheme of 2 times 3:1 randomized train test splits instead of the
default 10-fold cross-validation. These were accurate enough, but
consumed significantly less computation resources than full 10-fold
CVs. Accuracy decay rate was calculated at each training point by fit-
ting a linear functionon thedecoderperformances in consecutive time
points of cross-tested decoders and taking the slope over the first
500ms of forward test shifts. Angles between time course-shifted
(t1–t2) decoderswere calculated as γt1,t2 = arccosd(t1)d(t2), d normalized
at all t-s. The dimension of d-s when finding orthogonal vectors are
irrelevant as we assume the unimportant directions are random, thus
highly likely to contribute zeros to the scalar product, as well as their
noises cancel out to 0. Thus interesting angles are indistinguishable in
N and 2 dimensional spaces. Average angles were calculated for each
mice by averaging over the angle values in the lower triangles of
prestimulus (−1500 to 0ms) and on stimulus (0–3000ms) block
matrices, and the rectangular crossmatrix (t1 = −1500 to0ms, t2 = 0 to
3000ms). To reduce overlapping effects within the instantaneous
firing rate kernel width (100ms) and the feature space width of 50ms,
angle-matrix elements closer to 100ms from the diagonal (|
t1–t2| <100ms) were discarded. We calculated average accuracies
from the same matrix elements of the across-time decoder accuracy
matrix as the angle matrix, excluding 100ms wide band near the
diagonal for pre and on.

We calculated effective chance levels for the data by averaging
over 40 independent decoder cross-validation accuracy distributions
as described above, with fully randomized trial labels for the multi-
modal blocks taken from a Bernoulli (p =0.5) distribution. Thresholds
indicate trial time course-averaged mean + 1 s.e.m of 40 runs of the
means + 1 s.e.m.-s calculated over CVs. Decoders are expected to differ
from chance only towards higher accuracy, thus the confidence level is
one-sided 84% for 1 s.e.m. These were shown throughout multiple
figures and panels as gray levels.

The consistent and exploratory blocks-restricted context deco-
ders were constructed as follows: We included animals where both
contexts had at least 10 consistent trials. The number of trials available
to the decoders were equalized to the lowest number available in the
four trial type combinations of consistent and exploratory trials and in
any of the two contexts. We varied the number of trials via 20- repe-
tition subsampling for the other three combinations for each animal,
so that both classes have the same number of trials, even for the per-
formance category with the larger trial pool. We measured decoder
accuracies of the averages of these bootstraps. For these binary clas-
sification decoders, we employed leave-one-out cross-validation,

therefore the cross-validation variance is larger than for decoders with
fewer cross-validation attempts. We compared the accuracy of the
consistent and exploratory subset by subtraction. We excluded time-
points, where the accuracies of both decoders were below chance. We
recalculated the effective chance level for the used number of trials for
this criteria. Each mouse yielded a distribution of these accuracy dif-
ferences. We concatenated the accuracy differences of all mice and all
timepoints to establish a robust population level accuracy difference
distribution.

Assessment of the contributions of neurons to the decoder
The number of units recorded and successfully identified, and units
that do contribute to the performance of a decoder varied across
animals. Accuracy of decoders generally increases with the number of
available neurons. We used partial correlation when comparing
accuracies of separate decoders across animals to control for the
number of units available. We performed linear least squares fit for the
number of neurons predicting accuracy of decoders (Supplementary
Fig. 2a, b). The residuals of these fits contain no information about the
correlation between number of neurons and the accuracy of decoders.
When such residuals of decoders thatwerefit to different conditions in
the same animal correlated with each other (Supplementary Fig. 2c),
the resulting coefficient is highly unlikely to be confounded by the
number of neurons.

Multidecoder subspace analysis (MDSA)
A linear two-way classification decoder, e.g. logistic regression, defines
the Decision Vector (DV) as the optimal one-dimensional subspace of
the neural activity vector space alongwhich neural activity realizations
in single trials are best separated for the classes in question, e.g. 45°
and 135° visual stimuli trials. In other words the DV is the vector per-
pendicular to the N-1 dimensional hyperplane that best separates the
two classes (also called the normal vector of the decision boundary).
We calculated DVs by averaging over the 10 cross-validation runs, and
averaging the DVs of a number of linear decoders trained at different
time points of the trial: Unless otherwise noted, DVs are time averages
of the first 1500ms of the trial after stimulus onset.

Since the coordinates of all decision vectors are in the sameneural
activity vector space, their angular difference, γ1,2 = arccos d(1)d(2),
where d(k) is the normalized DV for the k-th decoder, provide a
meaningful description of neural activity regarding task relevant vari-
ables the decoders were trained to discriminate.

Since decision vectors, d(k) are defined in the same space (the
population activity space), individual decision vectors can be combined
together as a new basis spanning a multidimensional task-relevant
subspace, S:

S= spanðdð1Þ,dð2Þ,dð3Þ, . . .Þ:

This subspace will contain task-relevant neural activity the linear
decoders are able to pick up, and generally will be low-dimensional in
our experimental paradigm. These bases do not necessarily form an
orthogonal coordinate system, though: the basis vectors are linearly
independent, but not necessarily orthogonal. Such skewed coordinate
systems appear when some task variables have dependencies between
each other, e.g. correct animal choice and stimulus identity of the
relevant modality should be heavily dependent on each other if the
animal performs the task well. We normalized the decision vectors to
show each coordinate with unit length bases (SU, standardized units).

A low-dimensional representation of the high-dimensional neural
population activity can be obtained by projecting the population
activity onto the task-relevant subspace. The relevant bases can
include both a set of principal components (PCs) of a PCA, or
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subspaces of single or multiple DVs as basis:

u=Pa,

where a is the N dimensional activity vector, u is K dimensional
subspace-specific activity, where K is defined by the number of PCs or
DVs used as basis, and P is a K by N projection operator. Pwas defined
by theK rowsof transposed PCorDVmatrices, respectively. Projection
operators were normalized. We projected either each time point
individually onto theprojectionbases, yielding full trajectories:u(t) =P
a(t), or projected time-averages of an interval within a trial: u =P <a(t)
>t. Then the resulting task-relevant activity projection, u(t) or u, was
conveniently visualized in an orthonormalized version of the coordi-
nate system of the subspace S by the Gram-Schmidt procedure over P
showing the first few basis in P as orthogonal as possible in
orthonormal coordinates. Bases were reordered for each question
we asked to project the most relevant variables examined onto the
most natural first few orthogonal coordinates. The PCA basis was
orthogonal by construction.

When decoding from neural activity projected onto a subspace,
the projection operator in the coordinates of the original neural
activity basis is:P =D (DTD)-1DT, whereD = [d(1),d(2),d(3),…], a basis for S.
In case of the 1 dimensional subspace of e.g. the visual decision vector,
D =d, the projection D (DTD)-1 DT will become d dT / ||d||2.

We projected activity to the nullspace of a DVwith I - P, a reduced
rank projection operator, where I is the identity and P is the above
defined 1 dimensional projection operator, d dT/||d||2. With QR
decomposition, Q R = I - P we transformed I - P into a coordinate
system, Q, where the excess linearly dependent row with now all 0
values could be discarded for the projection operator. Calling also R
with the row discarded, is an N-1 by N matrix. Thus the remaining
activity when projected onto Q, u =R a, was N-1 dimensional.

An additional cross-validation step is necessary when decoding a
variable from activity projected onto its own 1D subspace. We defined
outer cross-validation as fitting a decoder in a training set, and using
theDV found in this training set as the basis to project activity onto the
test set. Then the inner cross-validation on the projected activity in the
outer test set was used with its own folding as described above. The
resulting inner cross-validation accuracies were averaged over the
outer folds yielding a single accuracy for each timepoint. We used an
outer two-fold cross-validation scheme for context in this study.

Locomotion distribution matching
In order to separate the possible contribution of locomotion from the
contribution of cognitive components to the context signal, we per-
formed run speed distribution matching between contexts. We cal-
culated the running speed of animals from the discrete time
derivatives of the magnitude of the vectorial sum of forward and lat-
eral displacement of the spherical treadmill. Running speed histo-
grams were constructed between 0 and 100 cm/s at 5 cm/s bins. We
averaged the run speed in 50-ms timewindows,matching the length of
the timewindowusedby the linear decoders. The run speeddata along
with the population activity data defined a joint distribution in which
every single trial in a context contributed a single data point. To con-
trol for differences between contexts, the histogram of run speeds in a
given context served as an approximation of the distribution of run
speeds. This histogram, however, is a noisy approximation since the
set of approximately 60 data points that corresponds to the individual
trials in a given context suffers from sampling noise. To rectify this
issue we expanded the set by including data points from consecutive
time windows. As a consequence, we could provide a more reliable
estimate of speed distribution albeit in the end at a lower time reso-
lution of 150ms. To have a matching running profile in the two con-
texts, we subsampled the running speed distributions such that the
histogram was identical in the two contexts. Then using the trials

retained after subsampling, we performed the decoding for the con-
text variable. We found that the increase in the number of trials using
three consecutive 50ms intervals balances out the number of trials we
lose in all run speedbins, either fromoneor theother condition so that
the decoders work on similar numbers of trials as without this
matching on previous analyses. We averaged 10 of such matching
subsamplings, and compared the cross-validated accuracy with the
average accuracy of 10 randomized sub-samplings of the samenumber
of trials for each run speed bin. Decoder results were such sub-
sampling averages of means and 2 s.e.m.-s of the cross-validation
accuracies. Shifts were defined as the difference between time indices
within trials between runspeed and neural data, unsyncing the two,
and the new full overlapping windows were used for analysis.

Video motion analysis
In addition to running speed, we identified diversemovement patterns
from video capture. Apart from using the raw pixel intensities as
posture proxies, we also calculated a frame pixel intensity difference,
d, from a moving average background with the equations: bt = β*xt −
(1−β)*bt-1 where x is a pixel from a frame, and b is the background, and
dt = λ*(xt−bt) + (1−λ)*dt−1. The rates appeared robust, we chose β = 0.3,
λ =0.9 for optimal combination of noise filtering, but still detecting
high frequency movements.

Then we performed principal component analysis (PCA) using
minimum rank singular value decomposition (SVD),X =USVT, to get a
small dimensional representation of themovement of the animal, from
either the posture (raw) or the movement (differential) frame stream.
Due to computer memory constraints, we first calculated the first 200
principal components based on the variance of 3000 frames chunks
(chunk PCs, outer PCA). Then we concatenated all frames of each
chunk PCs, and performed an inner PCA that yielded the first 40
principal components (PCs) over the variance of the chunk PCs from
the entire session. We used these PCs to either reconstruct frames in
the pixel space to cross check that the PCs actually capture move-
ments, and to perform further analysis on the small dimensional
movement space. For reconstruction we applied the inverse of the
inner, then outer PCAs, multiplying the PC matrix with the (VT)−1 =V
transformationmatrix, while at both stages applying the inverse of the
standardization and mean subtraction functions. We only recon-
structed the original image from the differential by cumulatively
adding together subsequent differential frame reconstructions. We
scaled the resulting differential and cumulative reconstructions to be
visually comparable with the differential frames and the originalmovie
frames, respectively. Video reconstruction output was downsampled
at the file input-output stage to one fifth.

An absolute posture or motion scalar for each frame was con-
structed by taking the absolute value of the principal components at
each frame, taking their 4 backward 4 forward 9 frames moving
average, and taking the mean over principal components. We further
analyzed the differential stream. Stationary frames were defined as
frames with amotion value lower than a threshold. Trials were defined
as stationary if in not more than a set percentage of time points the
absolute motion values exceeded stationary thresholds. Selected sta-
tionary trials were used from both contexts for the context decoders,
to assess the effect of stationary movement patterns. Similarly, we
binned trial time course points in intervals of absolute motion levels,
excluding timepoints where less than 5 trials were available for any of
the contexts, then equalizing the number of trials in the two contexts
by subsampling trials from the more numerous context, and then
averaged over time course points at each motion level bin.

Regions of interest (RoI) were chosen by visually cross-
referencing multiple movement patterns across the video capture.
Nose area also contained the whisker pad. Lickingwas restricted to the
mouth area. Right forepaw occasionally moved to the ear or mouth
area. A motion scalar was calculated from averaging over the pixels of
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the absolute values in the smoothed difference frames for each RoI.
Note, that this method did not use the global PCA, but rather the raw
intensities after the frame differential. Equalization for context
decoding was the same, as for the PCA derived absolute motion sca-
lars. Random trialswere chosen instead from the samemotion level for
the equalized shuffled control.

We calculated the variancepredictively explainedbyusing a 5-fold
cross validated ridge regularization regression to predict neural
activity frommotion PCs or motion PCs from neural activity. We used
posture PCs,motion PCs, andbodypartsmotion intensities. Predictors
were either single components, or the entire vector. In addition,
reduced rank multilinear regression at decreasing rank was also
attempted to reduce the number of parameters to fit. We attempted
20Hz resolution, 1 Hz resolution, and either at each timepoint during
trials separately, or concatenating all timepoints for all trials as sepa-
rate observations. Iterations were deemed not reaching a fit, if the
cross validatedpredictiveR2 = 1− residual sumof squares / total sumof
squares, was lower than 0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Behavioral and spike sorted electrophysiological data, and movement
data are available in the Zenodo database: https://zenodo.org/record/
7900224. Source data are provided with this paper.

Code availability
Event generator and behavior data acquisition: https://github.com/
golshanilab/AttentionTask.gitAnalysis:https://github.com/CSNLWigner/
mouse-v1-context https://github.com/CSNLWigner/mouse-v1-context-
movement.
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